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Introduction

Ground-based solar radiation measurements play a key role in PV project development and operation. They provide site-specific data essential for resource assessment, energy yield estimation, system

design, and performance monitoring. Rigorous quality control (QC) is crucial when using ground-measured solar radiation data for any downstream application. We quantify how retaining flawed measurements

propagates errors into downstream applications and show the resulting inaccuracies across common data-quality issues. Finally, we emphasize the importance of regular, proactive QC throughout measurement

campaigns. Early and continuous QC ensures timely issue detection, preserves data quality, and maximizes the integrity of long-term datasets relied on in PV applications.
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‘e . . . . . Calibration 1,95 0,90 13,29 — -
resource model when specific quality issues remain uncorrected. All datasets were evaluated using Solargis Dirt, Soiling 57,14 0,76 6,83 Ll g :
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« Most common issues: Exceeding physical minimum/maximum (91%), shading (85%), soiling (57%),

. . Table 1: Proportion of affected datasets and data-points by selected quality issues.
maintenance events (53%), and dew/frost (49%) of datasets. In 66% of datasets, detected anomalies could

not be clearly attributed to a specific cause. AbseluteQC Impact by lssuedype = Median & P90
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« Occurrence patterns vary. Shading typically dominates (median 5% of dataset). Other issues, such as sensor
misalignment, may appear sporadically (a few days) or persist throughout the entire dataset depending on
maintenance quality.

- Impact on data accuracy: Leaving issues unflagged increases bias by up to 1.3% (90th percentile) and
RMSD by up to 3.2% (90th percentile).

« Conclusion: Even small residual issues can significantly affect data uncertainty, highlighting the need for
consistent, well-defined QC procedures.
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Relative Bias vs Proportion of Affected Data Points

Variable Impact of Quality Issues on Uncertainty — 3
Soiling/Dirt Case Study : -

The statistics in Table 1 illustrate the typical occurrence and effect of various quality issues. In general, it is not

Relative Bias [%]
o

advisable to derive general uncertainty or correction factors from the presented statistics, as it would represent
a significant oversimplification. In reality, most issues exhibit high variability in both occurrence and severity,

as demonstrated in this soiling/dirt case study performed on 108 one-year GHI datasets.
rRMSD vs Proportion of Affected Data Points

Key takeaways:

« No consistent correlation exists between the occurrence of soiling/dirt and the resulting bias or RMSD.

0.5 ° ® @

- Any part of the day — or even the entire day — may be affected by soiling or dirt accumulation.

FRMSD [%]

- Impact severity varies widely: soiling can cause either a minor reduction or a severe drop in measured
GHI values.
« In some cases, soiling can artificially increase the measured irradiance signal
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« Conclusion: The highly variable nature of soiling effects highlights the importance of event-specific
professional assessment
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Table 2: Most common issues
identified in compromised datasets
of Global Horizontal Irradiance and
the maximal effect on the Relative
Bias and RMSD found in the sample.

Figure 1: Most common issues
identified in compromised datasets
of Global Horizontal Irradiance and
their absolute effect on the median
and 90th percentile Relative Bias and

RMSD.

Figure 2: The Scatter Plots showing
the relation between occurrence of

soiling/dirt and resulting increase in
bias and RMSD.
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Figure 3: Time Series showcasing the effect of soiling/dirt on measured data and comparison with Solargis solar resource model.
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If at all. On average, 15% of GHI measurement data are affected by quality issues — a value that can reach up to 7 266 234 500  -618 575 o
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« Even a 1° tilt misalighment can cause an bias of up to 1.6% in absolute value at higher latitudes. : - o el
« Regular QC and timely corrective actions can prevent such systematic errors, substantially reducing 10 Bl 19,92 25,08

measurement uncertainty and data loss. Table 3: The minimal, maximal and range of bias/RMSD of misaligned data

« Conclusion: Proactive QC throughout the campaign is far more effective than end-of-campaign validation, compared to the reference model GHI for 2 different locations.

ensuring higher data reliability and availability.

Conclusion

This analysis quantifies the impact of retaining compromised measurements on bias, RMSD, and overall data uncertainty. For GHI measurements, the median effect is 0.2%, while the 90th percentile bias reaches 1.3%. The maximal

value of bias in the sample reaches to 50.7%.

The results demonstrate that similar quality issues can manifest very differently, depending on local conditions and operational factors. Consequently, regular and proactive QC, combined with timely maintenance, is essential.

Early detection and mitigation of measurement issues significantly reduce uncertainty, prevent data loss, and ensure reliable measurements for further PV applications.
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